This article continues our look at reinforcement learning by considering another algorithm, namely the Monte-Carlo. This algorithm is very similar and in fact arguably encompasses both Q-Learning and SARSA in that it can be either on-policy or off-policy. What sets it apart though is the emphasis on episodes. These simply are a way of batching the reinforcement learning cycle updates, that we introduced in this article, such that the updating of the Q-Values of the Q-Map happens less frequently. ...
The recently published paper "Graph Transformer GANs with Graph Masked Modeling for Architectural Layout Generation" introduces the algorithm for the graph transformer generative adversarial model (GTGAN), which succinctly combines both of these approaches. The authors of the GTGAN algorithm address the problem of creating a realistic architectural design of a house from an input graph. The generator model they presented consists of three components: a message passing convolutional neural network ...