Neural networks made easy (Part 24): Improving the tool for Transfer Learning
by
, 10-30-2022 at 10:20 PM (321 Views)
more...In the previous article in this series, we have created a tool to take advantage of the Transfer Learning technology. As a result of the work done, we got a tool that allows the editing of already trained models.
Furthermore, the created tool allows not only editing trained models. It also allows creating completely new ones.
Such a useful toll should also be as user friendly as possible. Thus, in this article, we will try to improve its usability.
---------------------
- Neural networks made easy
- Neural networks made easy (Part 2): Network training and testing
- Neural networks made easy (Part 3): Convolutional networks
- Neural networks made easy (Part 4): Recurrent networks
- Neural networks made easy (Part 5): Multithreaded calculations in OpenCL
- Neural networks made easy (Part 6): Experimenting with the neural network learning rate
- Neural networks made easy (Part 7): Adaptive optimization methods
- Neural networks made easy (Part 8): Attention mechanisms
- Neural networks made easy (Part 9): Documenting the work
- Neural networks made easy (Part 10): Multi-Head Attention
- Neural networks made easy (Part 11): A take on GPT
- Neural networks made easy (Part 12): Dropout
- Neural networks made easy (Part 13): Batch Normalization
- Neural networks made easy (Part 14): Data clustering
- Neural networks made easy (Part 15): Data clustering using MQL5
- Neural networks made easy (Part 16): Practical use of clustering
- Neural networks made easy (Part 17): Dimensionality reduction
- Neural networks made easy (Part 18): Association rules
- Neural networks made easy (Part 19): Association rules using MQL5
- Neural networks made easy (Part 20): Autoencoders
- Neural networks made easy (Part 21): Variational autoencoders (VAE)
- Neural networks made easy (Part 22): Unsupervised learning of recurrent models .....
- Neural networks made easy (Part 23): Building a tool for Transfer Learning
- Neural networks made easy (Part 24): Improving the tool for Transfer Learning