more...In the previous article, we discussed the Conformer method, which was originally developed for weather forecasting. This is quite an interesting method. When testing the trained model, we got a pretty good result. But did we do everything right? Is it possible to get a better result? Let's look at the learning process. We are clearly not using the model forecasting the next most probable timeseries values for its intended purpose. By feeding the model input data from a timeseries, we trained it by propagating the error gradient from models using the prediction results. We started with the Critic's results.
RevIN — is a flexible, trainable layer that can be applied to any arbitrarily chosen layers, effectively suppressing non-stationary information (mean and variance of an instance) in one layer and restoring it in another layer of nearly symmetric position, such as input and output layers.
Bookmarks