Let's get acquainted with a new model family: Ordinary Differential Equations. Instead of specifying a discrete sequence of hidden layers, they parameterize the derivative of the hidden state using a neural network. The results of the model are calculated using a "black box", that is, the Differential Equation Solver. These continuous-depth models use a constant amount of memory and adapt their estimation strategy to each input signal. Such models were first introduced in the paper "
Neural Ordinary Differential Equations".